Multi-task Jointly Sparse Spectral Unmixing Method Based on Spectral Similarity Measure of Hyperspectral Imagery
XU Ning①②③ YOU Hongjian①② GENG Xiurui①② CAO Yingui④
①(Key Laboratory of Technology in Geo-spatial Information Processing and Application System, Chinese Academy of Sciences, Beijing 100190, China) ②(Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China) ③(University of Chinese Academy of Sciences, Beijing 100049, China) ④(School of Land Science and Technology, China University of Geosciences, Beijing 100083, China)
In this paper, a multi-task jointly sparse spectral unmixing method based on spectral similarity measure of hyperspectral imagery is proposed, which is a refinement of collaborative sparse spectral unmixing method. First, a threshold value is obtained through the statistical characters of some random selected neighboring pixels in hypersepctral image. Second, all pixels of hyperspectral image are grouped by a spectral similarity measure and the threshold value. Then, a multi-task jointly sparse optimization problem is constructed and solved for the grouped pixels, and the abundance coefficients are obtained finally. Experimentals results on synthetic and real hyperspectral image demonstrate the effectiveness of the proposed approach.
TONG Qingxi, ZHANG Bing, and ZHENG Lanfen. Hypersepctral Remote SensinuPrinciples, Techniques and Applications[M]. Beijing: Higher Education Press, 2006: 246-248.
[3]
浦瑞良, 宫鹏. 高光谱遥感及其应用[M]. 北京: 高等教育出版社, 2000: 1-5.
PU Ruiliang and GONG Peng. Hyperspectral Remote Sening and Its Application[M]. Beijing: Higher Education Press, 2000: 1-5.
[4]
HEINZ D C and CHANG C I. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(3): 529-545. doi: 10.1109/36.911111.
GENG Xiurui, ZHANG Bing, ZHANG Xia, et al. An unmixing method of hyperspectral imagery based on convex volume in high dimensional space[J]. Progress in Natureal Science, 2004, 14(7): 810-814
[6]
HONEINE P and RICHARD C. Geometric unmixing of large hyperspectral images: A barycentric coordinate approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(6): 2185-2195. doi: 10.1109/TGRS.2011.2170999.
[7]
YUAN Yuan, FU Min, and LU Xiaoqing. Substance dependence constrained sparse NMF for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(6): 2975-2986. doi: 10.1109/TGRS.2014. 2365953.
[8]
NASCIMENTO J M P and BIOUCAS-DIAS J M. Does independent component analysis play a role in unmixing hyperspectral data?[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(1): 175-187. doi: 10.1109/ TGRS.2004.839806.
[9]
SHI Chen and WANG Le. Incorporating spatial information in spectral unmixing: A review[J]. Remote Sensing of Environment, 2014, 149: 70-87. doi: 10.1016/j.rse.2014.03. 034.
[10]
BIOUCAS-DIAS J M. A variable splitting augmented Lagragian approach to linear spectral unmixing[C]. First Workshop on Hyperspectral Image Signal Processing: Evolution in Remote Sensing, Grenoble, 2009: 1-4. doi: 10.1109/WHISPERS.2009. 5289072.
[11]
IORDACHE M D, BIOUCAS-DIAS J M, and PLAZA A. Total variation spatial regularization for sparse hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(11): 4484-4502. doi: 10.1109/TGRS.2012. 2191590.
[12]
ZHONG Yanfei, FENG Ruyi, and ZHANG Liangpei. Non-local sparse unmixing for hyperspectral remote sensing imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6): 1889-1909. doi: 10.1109/JSTARS.2013.2280063.
[13]
CHEN Fen and ZHANG Yan. Sparse hyperspectral unmixing based on constrained lp-l2 optimization[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(5): 1142-1146. doi: 10.1109/LGRS.2012.2232901.
[14]
IORDACHE M D, BIOUCAS-DIAS J M, and PLAZA A. Collaborative sparse regression for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 341-354. doi: 10.1109/TGRS.2013.2240001.
[15]
BIENIARZ J, AGUILERA E, ZHU X X, et al. Joint sparsity model for multilook hyperspectral image unmixing[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(4): 696-700. doi: 10.1109/LGRS.2014.2358623.
WANG Rui, LI Hengchao, and YIN Zhongke. Collaborative sparse unmixing of hyperspectral data considering the difference of endmembers[J]. Journal of University of Electronic Science and Technology of China, 2014, 43(6): 813-817. doi: 10.3969/j.issn.1001-0548.2014.06.003.
[17]
KIM S J, KOH K, LUSTIG M, et al. An interior-point method for large-scale l1-regularized least squares[J]. IEEE Journal of Selected Topics in Signal Processig, 2007, 1(4): 606-617. doi: 10.1109/JSTSP.2007.910971.
LIU Jianjun, WU Zebin, WEI Zhihui, et al. Spatial correlation constrained sparse representation for hyperspectral image classification[J]. Journal of Electronics & Information Technology, 2012, 34(11): 2666-2671. doi: 10.3724/SP.J.1146. 2012.00577.
[19]
ZHANG Hongyan, LI Jiayi, HUANG Yuancheng, et al. A nonlocal weighted joint sparse representation classification method for hyperspectral imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6): 2057-2066. doi: 10.1109/JSTARS.2013. 2264720.
[20]
WAKIN N M, DUARTE M, SARVOTHAM S, et al. Recovery of jointly sparse signals from few random projections[C]. Processing Workshop on Neural Information Processing System, Vancouver, 2005: 1435-1442.
[21]
YUAN Xiaotong, LIU Xiaobai, and YAN Shuicheng. Visual classification with multi-task joint sparse representation[J]. IEEE Transactions on Image Processing, 2012, 21(10): 4349-4360. doi: 10.1109/TIP.2012.2205006.
[22]
LI Jiayi, ZHANG Hongyan, and ZHANG Liangpei. Efficient superpixel-level multitask joint sparse representation for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(10): 5923-5936. doi: 10.1109/TGRS.2015.2421638.
GENG Xiurui. Several mathmatical principles on information extraction for hyperspectral imagery[R]. Research Report for Post-Ph.D. in Beijing Normal University, Beijing, 2007.
[24]
IORDACHE M D, BIOUCAS J M, and PLAZA A. Dictionary pruning in sparse unmixing of hyperspectral data[C]. 4th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, Shanghai, 2012: 1-4. doi: 10.1109/WHISPERS.2012.6874329.
[25]
CLARK R, SWAYZE G, LIVO K, et al. Imaging spectroscopy: Earth and planetary remote sensing with the USGS tetracorder and expert systems[J]. Journal of Geophysical Research, 2003, 108(E12): 5131. doi: 10.1029/ 2002JE001847.
PU Hanye, WANG Bin, and XIA Wei. Nonlinear unmixing of hyperspectral imagery based on constrained least squares[J]. Journal of Infrared and Millimeter Waves, 2014, 33(5): 552-559. doi: 10.3724/SP.J.1010.2014.00552.