The nuclear norm is used to replace the rank function in the subspace clustering algorithm based on low rank representation, it can not estimate the rank of the matrix effectively and it is sensitive to Gauss noise. In this paper, a novel algorithm is proposed to improve the accuracy and maintain its stability under the Gauss noise. When building the objective function, the nuclear norm and Forbenius norm of coefficient matrix are used as the regularization terms, after a strong convex regularizer over singular values of coefficient matrix, an inexact augmented Lagrange multiplier method is utilized to solve the problem. Finally, the affinity matrix is acquired by post-processing of coefficient matrix and the classical spectral clustering method is employed to clustering. The experimental comparison results between the state-of-the-art algorithms on synthetic data, Extended Yale B and PIE datasets demonstrate the effectiveness of the proposed improved method and the robustness to Gauss noise.
WANG Weiwei, LI Xiaoping, FENG Xiangchu, et al. A survey on sparse subspace clustering[J]. Acta Automatica Sinica, 2015, 41(8): 1373-1384. doi: 10.16383/j.aas.2015.c140891.
[2]
VIDAL R. Subspace clustering[J]. IEEE Signal Processing, 2011, 28(2): 52-68. doi: 10.1109/MSP.2010.939739.
[3]
ELHAMIFAR E and VIDAL R. Sparse subspace clustering: Algorithm, theory, and applications[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 34(11): 2765-2781. doi: 10.1109/TPAMI.2013.57.
[4]
VIDAL R and FAVARO P. Low rank subspace clustering (LRSC)[J]. Pattern Recognition Letters, 2014, 43: 47-61. doi: 10.1016/j.patrec.2013.08.006.
[5]
LIU G C, LIN Z C, and YU Y. Robust subspace segmentation by low-rank representation[C]. Proceedings of the International Conference on Machine Learning, Haifa, Israel, 2010: 663-670.
[6]
LIU G C, LIN Z C, YAN S C, et al. Robust recovery of subspace structures by low-rank representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 171-184. doi: 10.1109/TPAMI.2012.88.
[7]
FENG J S, LIN Z C, XU H, et al. Robust subspace segmentation with block-diagonal prior[C]. Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 3818-3825. doi: 10.1109/CVPR.2014.482.
[8]
ZHANG X, SUN F, LIU G C, et al. Fast low-rank subspace segmentation[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(5): 1293-1297. doi: 10.1109/TKDE. 2013.114.
[9]
PATEL V M, NGUYEN H V, and VIDAL R. Latent space sparse and low-rank subspace clustering[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(4): 691-701. doi: 10.1109/JSTSP.2015.2402643.
[10]
LIU J M, CHEN Y J, ZHANG J S, et al. Enhancing low-rank subspace clustering by manifold regularization[J]. IEEE Transactions on Image Processing, 2014, 23(9): 4022-4030. doi: 10.1109/TIP.2014.2343458.
[11]
YIN M, GAO J B, LIN Z C, et al. Dual graph regularized latent low-rank representation for subspace clustering[J]. IEEE Transactions on Image Processing, 2015, 24(12): 4918-4933. doi: 10.1109/TIP.2015.2472277.
[12]
MOL C D, VITO E D, and ROSASCO L. Elastic-net regularization in learning theory[J]. Journal of Complexity, 2009, 25(2): 201-230. doi: 10.1016/j.jco.2009. 01.002.
[13]
LIN Z C, CHEN M M, and MA Y. The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices[R]. UIUC Technical Report UILU-ENG-09-2215, 2009.
[14]
NG A Y, JORDAN M, and WEISS Y. On spectral clustering: Analysis and an algorithm[C]. Proceedings of the Advances in Neural Information Processing Systems, Vancouver, Canada, 2001: 849-856.
[15]
LI H, CHEN N, and LI L Q. Error analysis for matrix elastic-net regularization algorithms[J]. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(5): 737-748. doi: 10.1109/TNNLS.2012.2188906.
[16]
CAI J F, CANDES E J, and SHEN Z W. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Control and Optimization, 2010, 20(4): 1956-1982. doi: 10.1137/080738970.
[17]
SHI J B and MALIK J. Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888-905. doi: 10.1109/ 34.868688.
[18]
BERTSEKAS D. Constrained Optimization and Lagrange Multiplier Methods[M]. Belmont, MA, USA: Athena Scientific, 1996: 326-340.
[19]
CANDES E J, LI X D, MA Y, et al. Robust principal component analysis[J]. Journal of the ACM, 2010, 58(1): 1-37. doi: 10.1145/1970392.1970395.
[20]
YAN J Y and POLLEFEYS M. A general framework for motion segmentation: Independent, articulated, rigid, non-rigid, degenerate and non-degenerate[C]. Proceedings of the European Conference on Computer Vision, Graz, Austria, 2006: 94-106. doi: 10.1007/11744085_8.
[21]
CHEN J L and LERMAN G. Spectral curvature clustering (SCC)[J]. International Journal of Computer Vision, 2009, 81(3): 317-330. doi: 10.1007/s11263-008-0178-9.
[22]
LU C Y, MIN H, ZHAO Z Q, et al. Robust and efficient subspace segmentation via least squares regression[C]. Proceedings of the European Conference on Computer Vision, Florence, Italy, 2012: 347-360. doi: 10.1007/978-3-642- 33786-4_26.