Green Communications Based on Physical-layer Security for Amplify-and-forward Relay Networks
WANG Dong①②③ LI Yongcheng① BAI Bo② WANG Manxi①
①(State Key Laboratory of Complex Electromagnetic Environmental Effects on Electronics and Information System, Luoyang 471003, China) ②(Department of Electronic Engineering, Tsinghua University, Beijing 100084, China) ③(New Star Research Institute of Applied Technology, Hefei 230031, China)
该文基于物理层安全理论,针对能量受限的无线中继网络提出一种绿色的保密通信方案。该方案在节点功率约束和系统最小目标保密速率要求下,通过最优功率控制实现系统的安全能效最大化,并基于分式规划、对偶分解和DC(Difference of Convex functions)规划理论提出了一种迭代的功率分配算法。通过仿真比较,能效优化可以显著提升系统的安全能效,然而相对于保密速率最大化会有一定保密速率损失,这是由于能效和保密之间存在固有的折中。但是,能效优化的保密速率仍然大于发送总功率最小化的保密速率。
In this paper, a green communication scheme based on physical layer security is addressed considering the energy and secrecy constraints. This scheme maximizes the secure Energy Efficiency (EE) of the network by power allocation subject to the maximum power constraint of each node and the target secrecy rate constraint of the network. Furthermore, an iterative algorithm for power allocation is developed based on fractional programming, dual decomposition, and Difference of Convex functions (DC) programming. It is verified by simulations that the proposed algorithm can lead to a significant gain of secure EE yet with some loss of secrecy rate compared with secrecy rate maximization. This is because that there is an inherent tradeoff between EE and secrecy. However, the achievable secrecy rate of the proposed scheme is still superior over that of total transmission power minimization.
王东,李永成,白铂,王满喜. 放大转发中继网络中绿色的物理层安全通信技术[J]. 电子与信息学报, 2016, 38(4): 841-847.
WANG Dong, LI Yongcheng, BAI Bo, WANG Manxi. Green Communications Based on Physical-layer Security for Amplify-and-forward Relay Networks. JEIT, 2016, 38(4): 841-847.
HUANG Kaizhi, HONG Ying, LUO Wenyu, et al. A method for physical layer security cooperation based on evolutionary game[J]. Journal of Electronics & Information Technology, 2015, 37(1): 193-199. doi: 10.11999/JEIT140309.
[2]
LIU J, DAI H, and CHEN W. Delay optimal scheduling for energy harvesting based communications[J]. IEEE Journal on Selected Areas in Communications, 2015, 33(3): 452-466. doi: 10.1109/JSAC.2015.2391972.
[3]
CHEN W, DAI L, LETAIEF K B, et al. A unified cross-layer framework for resource allocation in cooperative networks[J]. IEEE Transactions on Wireless Communications, 2008, 7(8): 3000-3012. doi: 10.1109/TWC. 2008.060831.
HUANG Gaoyong, FANG Xuming, and CHEN Yu. Resource allocation for energy efficiency maximization based on rate constrains in OFDM DF relay link[J]. Journal of Electronics & Information Technology, 2014, 36(9): 2104-2110. doi: 10.3724/SP.J.1146.2013.01661.
[5]
LI J, PETROPULU A P, and WEBER S. On cooperative relaying schemes for wireless physical layer security[J]. IEEE Transaction on Signal Processing, 2011, 59(10): 4985-4996. doi: 10.1109/TSP.2011.2159598.
[6]
DEHGHAN M, GOECKEL D L, GHADERI M, et al. Energy efficiency of cooperative jamming strategies in secure wireless networks[J]. IEEE Transactions on Wireless Communications, 2012, 11(9): 3025-3029. doi: 10.1109/ TWC.2012.070912.110789.
[7]
EL-HALABI M, LIU T, and GEORGHIADES C N. Secrecy capacity per unit cost[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(9): 1909-1920. doi: 10.1109/ JSAC.2013.130922.
[8]
NG D W K, LO E S, and SCHOBER R. Energy-efficient resource allocation for secure OFDMA systems[J]. IEEE Transactions on Vehicular Technology, 2012, 61(6): 2572-2585. doi: 10.1109/TVT.2012.2199145.
[9]
COMANICIU C, POOR H V, and ZHANG R. An information theoretic framework for energy efficient secrecy [C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, British Columbia, Canada, 2013: 2906-2910.
[10]
CHEN W. CAO-SIR: Channel aware ordered successive relaying[J]. IEEE Transactions on Wireless Communications, 2014, 13(12): 6513-6527. doi: 10.1109/TWC.2014.2363453.
[11]
LIU J, CHEN W, ZHANG Y, et al. A utility maximization framework for fair and efficient multicasting in multicarrier wireless cellular networks[J]. IEEE/ACM Transactions on Networking, 2013, 21(1): 110-120. doi: 10.1109/TNET. 2012.2192747.
[12]
EKREM E and ULUKUS S. Capacity-equivocation region of the Gaussian MIMO wiretap channel[J]. IEEE Transactions on Information Theory, 2012, 58(9): 5699-5710. doi: 10.1109/ TIT.2012.2204534.
[13]
KHODAKARAMI H and LAHOUTI F. Link adaptation with untrusted relay assignment: design and performance analysis[J]. IEEE Transactions on Communications, 2013, 61(12): 4874-4883. doi: 10.1109/TCOMM.2013.111513. 120888.
[14]
LIU J, CHEN W, CAO Z, et al. Cooperative beamforming for cognitive radio networks: A cross-layer design[J]. IEEE Transactions on Communications, 2012, 60(5): 1420-1431. doi: 10.1109/TCOMM.2012.031712.100284A.
[15]
CHEN W, LETAIEF K B, and CAO Z. Buffer-aware network coding for wireless networks[J]. IEEE/ACM Transactions on Networking, 2012, 20(5): 1389-1401. doi: 10.1109/TNET. 2011.2176958.
[16]
LIU J, CHEN W, CAO Z, et al. Delay optimal scheduling for cognitive radios with cooperative beamforming: A structured matrix-geometric method[J]. IEEE Transactions on Mobile Computing, 2012, 11(8): 1412-1423. doi: 10.1109/TMC. 2011.153.
[17]
DINKELBACH W. On nonlinear fractional programming[J]. Management Science, 1967, 13(7): 492-498.
[18]
PALOMAR D P and CHIANG M. A tutorial on decomposition methods for network utility maximization[J]. IEEE Journal on Selected Areas in Communications, 2006, 24(8): 1439-1451. doi: 10.1109/JSAC.2006.879350.
[19]
AN L T H and TAO P D. The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems[J]. Annals of Operations Research, 2005, 133(1/4): 23-46.
[20]
NGO D T, KHAKUREL S, and LE-NGOC T. Joint subchannel assignment and power allocation for OFDMA femtocell networks[J]. IEEE Transactions on Wireless Communications, 2014, 13(1): 342-355. doi: 10.1109/TWC. 2013.111313.130645.
[21]
RICHTER S, JONES C, and MORARI M. Computational complexity certification for real-time MPC with input constraints based on the fast gradient method[J]. IEEE Transactions on Automatic Control, 2012, 57(6): 1391-1403. doi: 10.1109/TAC.2011.2176389.