The imbalance between sample categories in traffic sign detection often results in the weakening of classification detection performance. To overcome this problem, a traffic sign detection method is proposed based on regions of interest and Histogram of Oriented Gradient and Multi-radius Block Local Binary Pattern (HOG-MBLBP) features. First, the color enhancement technology is used to segment and extract the regions of interest of the traffic signs captured in the natural background. Then HOG-MBLBP fusion features are extracted from traffic signs sample library. Moreover, genetic algorithm is used to optimize the parameters of Support Vector Machine (SVM) through cross-validation so as to train and promote SVM classifier performance. Finally, extracted HOG-MBLBP features of interest region images are put into the trained SVM multi-classifiers for further accurate detection and localization. By this method, the paper achieves the purpose of excluding false positives area. The experiments are carried out on the self-built Chinese traffic sign sample library, experimental results show that the proposed method can achieve 99.2% of classification accuracy, and the confusion matrix results also show the superiority of the proposed method.
刘成云,常发亮,陈振学. 基于感兴趣区域和HOG-MBLBP特征的交通标识检测[J]. 电子与信息学报, 2016, 38(5): 1092-1098.
LIU Chengyun, CHANG Faliang, CHEN Zhenxue. Traffic Sign Detection Based on Regions of Interest and HOG-MBLBP Features. JEIT, 2016, 38(5): 1092-1098.
LIU Huaping, LI Jianmin, HU Xiaolin, et al. Recent progress in detection and recognition of the traffic signs in dynamic scenes[J]. Journal of Image and Graphics, 2013, 18(5): 493-503.
CHANG Faliang, HUANG Cui, LIU Chengyun, et al. Traffic sign detection based on Gaussian color model and SVM[J]. Chinese Journal of Scientific Instrument, 2014, 35(1): 43-49.
[3]
MALDONADO-BASCON S, LAFUENTE-ARROYO S, GIL-JIMENEZ P, et al. Road-sign detection and recognition based on support vector machines[J]. IEEE Transactions on Intelligent Transportation Systems, 2007, 8(2): 264-278. doi: 10.1109/TITS.2007.895311.
XU Dihong and TANG Luliang. Traffic sign detection based on color and boundary feature[J].Geomatics and Information Science of Wuhan University, 2008, 33(4): 433-436.
[5]
GARCIA-GARRIDO M A, SOTELO M A, and MARTIN- GOROSTIZA E. Fast road sign detection using hough transform for assisted driving of road vehicles[C]. Proceedings of 10th International Conference on Computer Aided Systems Theory, Berlin, 2005: 543-548.
[6]
HOFERLIN B and ZIMMERMANN K. Towards reliable traffic sign recognition[C]. Proceedings of the IEEE Intelligent Vehicles Symposium, Xi’an, 2009: 324-329.
[7]
KHAN J F, BHUIYAN S, and ADHAMI R R. Image segmentation and shape analysis for road-sign detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(1): 83-96. doi: 10.1109/TITS.2010.2073466.
[8]
CARAFFI C, CARDARELLI E, MEDICI P, et al. An algorithm for Italian de-restriction signs detection[C]. Proceedings of the IEEE Intelligent Vehicles Symposium, Eindhoven, 2008: 834-840.
[9]
ZAKLOUTA F and STANCIULESCU B. Real-time traffic sign recognition in three stages[J]. Robotics and Autonomous System, 2014, 62(1): 16-24. doi: 10.1016/j.robot.2012.07.019.
[10]
LIU C, CHANG F, and CHEN Z. Rapid multiclass traffic sign detection in high-resolution images[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(6): 2394-2403. doi: 10.1109/TITS.2014.2314711.
PAN Hong, LI Xiaobing, JIN Lizuo, et al. A binary particle swarm optimization and support vector machine-based algorithm for object detection[J]. Journal of Electronics & Information Technology, 2011, 33(1): 117-121. doi: 10.3724/ SP.J.1146.2010.00260.
LI Junyang, JIN Lizuo, FEI Shumin, et al. Urban road detection based on multi-scale feature representation[J]. Journal of Electronics & Information Technology, 2014, 36(11): 2578-2585. doi: 10.3724/SP.J.1146.2014.00271.
[13]
LILLO-CASTELLANO J M, MORA-JIMENEZ I, FIGUERA- POZUELO C, et al. Traffic sign segmentation and classification using statistical learning methods[J]. Neurocomputing, 2015, 153: 286-299. doi: 10.1016/ j.neucom. 2014. 11.026.
[14]
SALTI S, PETRELLI A, TOMBARI F, et al. Traffic sign detection via interest region extraction[J]. Pattern Recognition, 2015, 48(4): 1039-1049. doi: 10.1016/ j.patcog. 2014.05.017.
[15]
RUTA A, LI Y, and LIU X. Real-time traffic sign recognition from video by class-specific discriminative features[J]. Pattern Recognition, 2010, 43(1): 416-430. doi: 10.1016/j. patcog.2009.05.018.
[16]
RUTA A, PORIKLI F, WATANABE S, et al. In-vehicle camera traffic sign detection and recognition[J]. Machine Vision and Applications, 2011, 22(2): 359-375. doi: 10.1007/ s00138-009-0231-x.
[17]
DALAL N and TRIGGS B. Histograms of oriented gradients for human detection[C]. Proceedings of the International Conference on Computer Vision and Pattern Recognition, Beijing, 2005: 886-893.
[18]
OJALA T, PIETIKAINEN M, and MAENPAA T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987. doi: 10.1109/TPAMI.2002.1017623.
[19]
WANG X, HAN T X, and YAN S. An HOG-LBP human detector with partial occlusion handling[C]. Proceedings of 12th IEEE International Conference on Computer Vision, Kyoto, 2009: 32-39.
CHEN Long, PAN Zhimin, MAO Qingzhou, et al. HOG-LBP adaptable fused features based method for forbidden traffic signs detection[J]. Geomatics and Information Science of Wuhan University, 2013, 38(2): 191-194.
[21]
CORTES C and VAPNIK V. Support-vector network[J]. Machine Learning, 1995, 20(3): 273-297. doi: 10.1023/ A:1022627411411.
LIU Zhiqiang, LÜ Xue, and ZHANG Li. Highway automatic incident detection based on multi-class classification and GA-SVM[J]. Systems Engineering-Theory & Practice, 2013, 33(8): 2110-2115.