Investigation on THz Interferometer System Based on High Speed Digital Correlator
HAN Donghao①② LIU Hao① WU Ji① WU Qiongzhi③ ZHANG Dehai① LU Hao① Zhang Ying①②
①(Key Laboratory of Microwave Remote Sensing, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China) ②(University of Chinese Academy of Sciences, Beijing 100049, China) ③(Beijing Institute of Technology, Beijing 100081, China)
As a conventional unit in interferometric imager, correlator has a wide range of applications to get visibility functions. THz imager has more and more applied to security check and military scouting area. To solve the phase synchronization problem in high speed digital correlator, which is designed for THz interferometer, this paper presents a cross synchronization scheme based on low hardware cost FPGA controller. A high speed multichannel digital correlator is presented under this scheme. In this correlator, sampling rate can reach as high as 5 GHz, effective number of ADC is greater than or equal to 6 bit, integration time is adjustable. Interference fringes are presented by constructing a 0.44 THz interferometer out of this correlator and related THz microwave devices. The fringe’s linear phase error is better than 2°. The research could provide important reference value about the design of THz interferometric imager in future.
韩东浩,刘浩,吴季,吴琼之, 张德海,陆浩,张颖. 基于高速数字相关器的太赫兹干涉仪系统研究[J]. 电子与信息学报, 2016, 38(4): 964-969.
HAN Donghao, LIU Hao, WU Ji, WU Qiongzhi, ZHANG Dehai. Investigation on THz Interferometer System Based on High Speed Digital Correlator. JEIT, 2016, 38(4): 964-969.
NEZADAL M, ADAMETZ J, and SCHMIDT L P. Wideband imaging systems in the mm-wave and THz range for security and nondestructive testing[C]. IEEE General Assembly and Scientific Symposium, Beijing, China, 2014: 104-118.
[2]
PIERNO L, FIORELLO A M, SCAFE S, et al. THz-TDS analysis of hidden explosives for homeland security scenarios[C]. IEEE Millimeter Waves and THz Technology Workshop, Rome, Italy, 2013: 1-2.
[3]
DILL S and PEICHL M. Study of passive MMW personnel imaging with respect to suspicious and common concealed objects for security applications[C]. Millimetre Wave and Terahertz Sensors and Technology (SPIE), Cardiff, United Kingdom, 2008: 7117-7125.
[4]
LUUKANEN A, KIURU T, LEIVO M M, et al. Passive three-colour submillimetre-wave video camera[J]. Proceeding SPIE, 2013, 8715. doi: 10.1117/12.2018038.
[5]
BANDYOPADHYAY A, SINYUKOV A M, and BARAT R B. Interferometric terahertz imaging for detection of lethal agents using artificial neural network analyses[C]. IEEE Sarnoff Symposium, Princeton, United States, 2006, 9908968: 1-4.
[6]
THOMPSON A R and MORAN J M. Interferometry and Synthesis in Radio Astronomy[M]. Second Edition, Weinheim, John Wiley & Sons, 2004: 50-63.
[7]
RUF C S, SWIFT C T, TANNER A B, et al. Interferometric synthetic aperture microwave radiometry for the remote sensing of the Earth[J]. IEEE Transactions on Geoscience and Remote Sensing, 1988, 26(5): 597-611.
[8]
WU L, TORRES F, CORBELLA I, et al. Radiometric performance of SMOS full polarimetric imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(6): 1454-1458.
[9]
LIU H, WU J, ZHANG S, et al. The Geostationary Interferometric Microwave Sounder (GIMS): instrument overview and recent progress[C]. Geoscience and Remote Sensing Symposium (IGARSS), Vancouver, BC, Canada, 2011: 3629-3632.
[10]
ZHANG C, LIU H, WU J, et al. Imaging analysis and first results of the geostationary interferometric microwave sounder demonstrator[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(1): 207-218.
YANG H G, SUN J B, and WANG W. An overview to FPGA device design technologies[J]. Journal of Electronics & Information Technology, 2010, 32(3): 714-727.
MENG J, ZHANG D H, and JIANG C H. Research on the practical design method of 225 GHz tripler[J]. Journal of Infrared and Millimeter Waves, 2015, 34(2): 190-195.
[13]
BUTORA R, MARTIN M, ANGEL L, et al. Fringe-washing function calibration in aperture synthesis microwave radiometry[J]. Radio Science, 2003, 38(2): 1032. doi: 10.1029/2002RS002695.
WU Q Z, CAI C X, DING Y C, et al. Design and implementation of 5 Gsps high-speed data acquisition system[J]. Electronic Design Engineering, 2012, 20(1): 154-157.
WANG H X, LI G, XING M D, et al. Design of digital down converter of mini SAR[J]. Journal of Electronics & Information Technology, 2010, 32(2): 485-489. doi:10.3724/ SP.J.1146.2008.01770.
[16]
PARHI K. VLSI Digital Signal Processing Systems: Design and Implementation[M]. Chichester: John Wiley & Sons, 1999: 229-261.
[17]
CORBELLA I, TORRES F, CAMPS A, et al. MIRAS end-to-end calibration: application to SMOS L1 processor[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(5): 1126-1134.
[18]
PIEPMEIER J R and GASIEWSKI A J. Digital correlation microwave polarimetry: Analysis and demonstration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(11): 2392-2410.