In order to solve the problem that the performance of existing algorithms for the symbol rate estimation of Phase Shift Keying (PSK) signals will significantly degrade in the Alpha stable noise environment, a novel Cauchy distribution based Maximum-Likelihood Estimator (CMLE) method for symbol rate of PSK signals is proposed. The parameters of the timing offset and the symbol rate can be estimated simultaneously through this method. The windowed procedure is utilized in the CMLE and the noise polluted PSK signal is divided into a timing offset window and the multiple windows with certain width which are non-overlapping and synchronized in the time domain, and only one code symbol is contained in each window; in the Alpha stable noise environment, the symbol in the window is utilized and a likelihood function based on Cauchy distribution is built, then the maximum-likelihood estimation of window width for the timing offset and the symbol rate can be achieved simultaneously. The simulation results show that the proposed method can suppress the Alpha stable noise efficiently and offer superior parameter estimation performance.
金艳,朱敏, 姬红兵. Alpha稳定分布噪声下基于柯西分布的相位键控信号码速率最大似然估计[J]. 电子与信息学报, 2015, 37(6): 1323-1329.
Jin Yan, Zhu Min, Ji Hong-bing. Cauchy Distribution Based Maximum-likelihood Estimator for Symbol Rate of Phase Shift Keying Signals. JEIT, 2015, 37(6): 1323-1329.
Zeng Wei-gui, Sun Ying-feng, Xu Hui-qi, et al.. Waveform design and parameter calculation for quasi-continuous wave radar system[J]. System Engineering and Electronics, 2013, 35(3): 517-521.
[2]
Tsakalides P and Nikias C L. Maximum likelihood localization of sources in noise modeled as a stable process[J]. IEEE Transactions on Signal Processing, 1995, 43(11): 2700-2713.
[3]
Pelekanakis K and Chitre M. Adaptive sparse channel estimation under symmetric alpha-stable noise[J]. IEEE Transactions on Signal Wireless Communications, 2014, 13(6): 3183-3195.
[4]
Francois-Xavier S, Dominique P, and Mathieu D. On symmetric alpha-stable noise after short-time Fourier transform[J]. IEEE Signal Processing Letters, 2013, 20(5): 455-458.
Liu Tian-qi, Yang Liu-fei, Dai Shao-sheng, et al.. Estimation of period and chip rate of pseudo-noise sequence for direct sequence spread spectrum signals using correlation techniques[J]. Aerospace Electronic Warfare, 2007, 23(4): 53-57.
Zhang Zi-bing, Li Li-ping, and Xiao Xian-ci. Detection and chip rate estimation of MPSK signals based on cyclic spectrum density[J]. System Engineering and Electronics, 2005, 27(5): 804-806.
Jin Yan, Ji Hong-bing, and Luo Jun-hui. A cyclic-cumulant based method for DS-SS signal detection and parameter estimation[J]. Acta Electronica Sinica, 2006, 34(4): 634-637.
Fu Qin-qin. Parameter estimation of phase-coded signals[D]. [Master dissertation], Xidian University, 2012: 39-41.
[9]
Wang Long, Zhang Geng-xin, Bian Dong-ming, et al.. Blind symbol rate estimation of satellite communication signal by Haar wavelet transform[J]. Journal of Electronics (China), 2011, 28(2): 199-203.
[10]
Carlos M, Sandro S, and Lopez-Valcarce R, Non-data-aided symbol rate estimation of linearly modulated signals[J]. IEEE Transactions on Signal Processing, 2008, 56(2): 664-674.
Zhang Jia-fen, He Xiao-dong, and Tang Bin. A fast parameter estimation approach for multiplicative signal combined PRBC and LFM[J]. Telecommunication Engineering, 2009, 49(12): 100-103.
Yang Shao-bing and Wu Ming-li. An assessment method of power system harmonic impedance based on generalized Cauchy distribution[J]. Proceedings of Chinese Society for Electrical Engineering. 2014, 34(7): 1159-1166.
[14]
Gonzalez J G and Arce G R. Optimality of the myriad filter in practical impulsive-noise environments[J]. IEEE Transactions on Signal Processing, 2001, 49(2): 438-441.
Zhao Xin-ming, Jin Yan, and Ji Hong-bing. Parameter estimation of frequency-hopping signals based on Merid filter in stable noise environment[J]. Journal of Electronics & Information Technology, 2014, 36(8): 1878-1883.